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LE’ITER TO THE EDITOR 

The crumpled state of some non-equilibrium fractal surfaces 
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Departamento de Fisica, Universidade Federal de Pernambuco, 50739 Recife PE, Brazil 

Received 28 August 1990 

Abstract. We study how the three-dimensional ‘air’ or Pythagorean distance r(Q, Q’)  
between two points Q and Q’ on a non-equilibrium crumpled fractal surface (cs ) ,  with 
the topology of the plane, transforms in the internal or geodesic distance x(Q, Q’)-with 
probability P ( x ,  r)-after the unfolding of the cs  on a plane. The probability distribution 
P ( x ,  r )  governing this process is examined for the first time. Among other results we find 
that (1) the width of P ( x ,  r) ‘diverges’ for r near the ensemble average radius R of the cs 
and (2)  (x) - r”’. 

The last few years has witnessed a renaissance in the study of random systems, mainly 
in connection with fractals and non-equilibrium phenomena [ 1 1 .  In particular, very 
simple experiments [2] and computer simulations [3] have revealed the existence of 
several types of non-equilibrium critical phenomena associated with many kinds of 
random fractals. On the other hand, one of the major challenges in theoretical physics 
today is to understand the properties and behaviours of surfaces and membranes. From 
the experimental point of view, much evidence has been reported about the possible 
relevance of a fractal description for surfaces of materials involved in many physical, 
chemical and biological processes, e.g. adsorption [4], fractures [ 51, catalysis [6] and 
protein and antibody specificity and recognition in biomolecular interactions [7]. 

In this letter we deal with non-equilibrium configurations of fractal crumpled 
surfaces (cs) obtained from random and irreversible compactification of two- 
dimensional manifolds. Some properties of these random objects have been studied 
recently [8]. The cs are self-avoiding surfaces with the topology of the plane and with 
spherical shape. They satisfy the mass-size scaling relation mass - L2 - R D, where L 
is the linear (uncrumpled) size of the manifold, R is the ensemble average radius or 
the radius of gyration of the cs and D = 2.5 with typical fluctuations of 8% [8]. The 
existence of a narrow interval of values for the exponent D in these ill-defined crumpling 
operations is an empirical fact probably correlated to topological constraints, i.e. 
surface connectivity certainly implies quite limited crumpling procedures which in turn 
lead to an almost invariant value for D. Since D for cs is unaffected by the way of 
crumpling (with pressure applied, in haste or not) [8], it is possible to reproduce these 
objects and to study their geometrical and physical properties [8, 10, 11,141. 

The formation of irregular fractal patterns under non-equilibrium conditions has 
become a subject of great scientific and practical interest [l-3,8-111. The cs studied 
here belong to an ensemble completely different from the equilibrium ensembles of 
random surfaces recently examined by a number of authors [12]. The statistics of 
random surfaces and of the cs in particular are still to a large extent an unexplored 
field. Besides representing an interesting problem in surface statistics on their own, cs 
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can also be of potential interest in polymer and surface physics. From the conceptual 
point of view cs may display novel critical phenomena which are at this point poorly 
understood [8, 131. In this letter we discuss a new kind of critical phenomenon involving 
this class of surfaces. It is expected that many problems on diffusion [lo], capillary 
and screening effects [ 141, adsorption and chemical kinetics [6], vibrations and 
mechanical properties in general [ 111 can be studied in connection with cs. 

As a consequence of the random compactification processes which generate the 
cs, the ‘air’ distance r = r (Q ,  Q’) between two points Q and Q’ belonging to the 
manifold in the tridimensional space (i.e. in the crumpled C-state) is transformed after 
the unfolding of the cs  on the plane (flat F-state) in some distance x = x( Q, Q’) with 
a probability P ( x ,  r )  dependent on x and r. Here the power laws associated with this 
type of critical phenomenon are investigated and the probability distribution P is 
shown for the first time. Among other results, we find that: (i) the width of the 
probability distribution P ‘diverges’ when r approximates a critical value close to R ;  
( i i )  the ensemble average ( x )  for the distances in the F-state scales with r as (x) - Y ” ~ .  

Although a lot of theoretical results have been published on random surfaces at 
equilibrium [ 121, the same cannot be said about the non-equilibrium crumpled surfaces. 
To gain more insight and knowledge, the probability distribution P introduced in the 
previous paragraph is studied in this letter from the experimental point of view using 
an ensemble of 300 square sheets of paper with edge L = 66.0 cm. After the crumpling 
of each one of these sheets into approximately spherical balls, the cs presented an 
ensemble average radius R = 4.3 f 0.2 cm. On the external surface of each cs of the 
ensemble we marked at random 10 pairs of points with the distances r between them 
satisfying 100 r / R  =4.63, 6.95, 9.27, 13.9, 18.5, 27.8, 34.8, 57.9, 92.7 and 185. Thus r 
varies by a factor of 40 which represents the largest internal of variability for this 
length in this type of experiment. In the second stage the cs were unfolded on the 
plane (without tears) and the distribution of distances x as a function of the fixed 
values of r was examined. An internal distance between two points Q and Q‘ at the 
F-state is computed as x if both points are on the same face of the manifold or on 
opposite faces of the manifold. 

In figure 1 the average distance ( x )  (at the F-state) corresponding to a fixed distance 
r (in the C-state) is plotted against r. It is found that (x)- r0.333. An estimate for this 
exponent may be obtained with the following argument. ( i )  The intersection of a cs 
of fractal dimension D 3 2.5 with a straight line segment of length r (the Pythagorean 

0.03 0.1 0 . 3  1 3 
r /R  

Figure 1. The (ensemble average) ‘internal’ 2D distance (x) between two points, Q and 
Q’, belonging to a cs as a function of the ‘air’ 3 D  distance r = r (  Q, 0‘). L = 66 cm is the 
size of the manifold and R = 4.3 cm is the radius of gyration. (x) - r0.333 with a coefficient 
of correlation 99%. 
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distance) is a Cantor set S of dimension S = D-2-0.5.  (ii) Uncertainty in S = 
uncertainty in D = k0.20 or 33% of D [8]. (iii) The expected (effective) mass( m)-size( r )  
scaling relation for s is m - r0.5*0.2 . m can be estimated in a mean-field manner by 
smearing out all the geodesic length (x) over the length r, i.e. m - (x) - r0.5*0.2. 

The relative fluctuations of the distance x at the F state, x(RMs)/(x), scales as 
X(RMS)/(X) - r-0.344 . The root mean square distance X(RMS) is defined by 

(xi - (x))*/( N - 1 )  
i=l 

with N = 300 and xi being the Euclidean distance QQ’ at the F-state for the ith cs, 
for a fixed value of r. Thus, the relative fluctuations in x decrease with a one-third 
power law as r increases. 

The probability distribution P as a function of x is shown in figure 2 ( a - d )  for 
some chosen values of r. In these figures we have expressed x as a new discrete variable 
z. Thus z = n = i n t e g e r  means that ( n - l ) ~ S x / L < n ~ ,  for l s n s f i / E ,  L=66cm. A 
statistical analysis of the data was made with the values of E = 0.014 14, 0.030 09, 
0.058 93,O.lOl 02,0.176 78,0.262 84 and 0.471 40 in conformity with the usual procedure 
to choose the bin sizes [ 151. Figure 2 corresponds to E = 0.058 93, i.e. the largest interval 
of variation of x/ L, 0 s x/ L S fi, is covered by n = fi/ E = 24 subintervals (bins) of 
identical size. The width w at half-height of the probability distribution (indicated by 
triangles in figure 2) assumes their largest value for r /  R = 1 .  This happens for all the 
values of E in our experiments. The dependence of w with r, is shown in figure 3 for 
some values of the bin size E. Thus: (i) w is nearly constant for 0.04s r / R  ~ 0 . 4 ,  
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Figure 2. The probability distribution P ( x ,  r )  as a function of the dimensionless variable 
x/L, L = 6 6 c m  (x/L=integer z means that ( Z - I ) E ~ X / L < Z E ,  where E is the bin size; 
E = 0.058 93 in these figures, thus, the interval 0s x/ L s 4 is covered by 24 of such bins) 
for r / R  =0.069 51 ( a ) ,  0.278 04 ( b ) ,  0.927 ( c )  and 1.85 ( d ) ,  R =4.3 cm. Triangles denote 
the width of P at half-height. See text and figure 3. 
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r /R 

Figure 3. The width (x) of the probability distribution P at half-height as a function of 
the same dimensionless variable r /  R of figures 1 and 2 for E = 0.014 14(0) ,  0.058 93(+) 
and 0.101 02(0) .  w increases rapidly for r / R  ~ 0 . 4  and reaches the maximum (about 65% 
of the largest possible value for w )  for r / R  = 1 ,  irrespective of E .  

R =4.3 cm; (ii) w increases by a factor of nine in the interval 0.4s r /  R s 1; (iii) w 
decreases rapidly for r /  R > 1, independent of E. 

Furthermore, we have examined how P,,,( r ) ,  the maximum in P ( x ,  r )  depends on 
r, and E. PmaX exhibits the power-law scaling P,,, - r -@,  with a = 0.5 1 f 0.04 irrespective 
of E.  On the other hand, P,,, - eo,6'*o.11 , irrespective of r in the interval 0.046 s ( r /  R )  s 
1.85. 

It is interesting to note that cs, percolation clusters and DLA E13 are examples of 
random fractals which look completely different from each other but have D=2.5 
when d = 3. Thus, it is important to investigate the fractal dimension dmin of the 
minimum path on the cs [ l ,  161. In this case the Pythagorean distance r scales with 
the minimum path 1 = xminimum as 1 - r d " n .  For cs we find that dmin = 1 within fluctuations 
of 10%. This value in d = 3 is comparable to thhose obtained for DLA and percolation 
clusters, namely dmin = 1 (independent of d )  and dmi, = 1.3(d = 3), respectively [ 13. 

The statistics of random surfaces, and of the cs in particular, are still to a large 
extent an unexplored field. The experiment described in this letter explores the special 
features of the probability distribution which correlates the three-dimensional external 
'air' distance r( Q, Q') with the uncrumpled (geodesic) distances x( Q, Q') between two 
points Q and Q' belonging to non-equilibrium crumpled (fractal) surfaces with the 
topology of the plane. A complete analysis of the problem discussed in this letter seems 
difficult from the point of view of theory and computer simulations. However, we 
expect that the scaling relations describing this interesting critical behaviour will 
stimulate theoretical work as well as numerical simulation on the subject. Furthermore, 
we think that the ideas developed here are also useful in the study of other issues on 
crumpled surfaces and random geometries. 
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tifico e Tecnol6gico and Financiadora de Estudos e Projetos of Brazil. 
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